Identification of central nervous system neurons that innervate the bladder body, bladder base, or external urethral sphincter of female rats: A transneuronal tracing study using pseudorabies virus

Author(s):  
Lesley Marson
2014 ◽  
Vol 35 (3) ◽  
pp. 371-376
Author(s):  
Scheila F. C. Nascimento ◽  
Ana Paula S. Bispo ◽  
Katia Ramos Leite ◽  
Helio Plapler ◽  
Claudius Füllhase ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. e00282 ◽  
Author(s):  
Heather E. Held ◽  
Raffaele Pilla ◽  
Geoffrey E. Ciarlone ◽  
Carol S. Landon ◽  
Jay B. Dean

Reproduction ◽  
2001 ◽  
pp. 915-924 ◽  
Author(s):  
L Pinilla ◽  
LC Gonzalez ◽  
F Gaytan ◽  
M Tena-Sempere ◽  
E Aguilar

Selective oestrogen receptor modulators constitute a family of drugs that are used increasingly in the management of oestrogen-associated pathology. Raloxifene is a selective oestrogen receptor modulator that is used to treat and prevent osteoporosis in post-menopausal women. The actions of raloxifene on bone, breast, uterus and serum cholesterol concentrations have been widely analysed, but very few studies have investigated the possible actions of this drug on the central nervous system. The central nervous system of the newborn rat is very sensitive to oestrogen action. In this study a series of experiments was conducted to analyse the effects of different doses of raloxifene (50, 100, 250 or 500 microg per rat per day) administered to neonatal rats on days 1-5 of age. Female rats treated with raloxifene showed decreased gonadotrophin secretion, hyperprolactinaemia, advanced vaginal opening, decreased body weight, persistent presence of cornified epithelial cells in vaginal smears, anovulation, inhibition of positive feedback between oestradiol and LH, and infertility. Male rats showed delayed balanopreputial separation, reduced body weight and hyperprolactinaemia. All these changes resemble those obtained after neonatal administration of oestradiol benzoate, thus indicating, for the first time, that raloxifene exerts an oestrogenic action on the hypothalamic-pituitary structures controlling reproductive function in rats.


2007 ◽  
Vol 292 (4) ◽  
pp. R1699-R1706 ◽  
Author(s):  
Paul C. Dolber ◽  
Baojun Gu ◽  
Xiaoyang Zhang ◽  
Matthew O. Fraser ◽  
Karl B. Thor ◽  
...  

We recently demonstrated that treatment with the 5-HT1A/7 receptor agonist [(R)-(+)-8-hydroxy-2-di-n-propylamino]tetralin (8-OH-DPAT) increases bladder capacity in chloralose-anesthetized female cats with chronic spinal cord injury. In the current study, we investigated the effects of 8-OH-DPAT on bladder capacity and external urethral sphincter (EUS) activity in urethane-anesthetized female rats (initial body mass 175–200 g) with chronic spinal cord injury (transsection at T10). Cystometric study took place 8–12 wk posttranssection. Intravesical pressure was monitored in urethane-anesthetized rats with a transvesical catheter, and EUS activity was assessed electromyographically. Spinal cord injury disrupts phasic activity of the EUS, resulting in decreased voiding efficiency and increased residual volume. 8-OH-DPAT induced a dose-dependent decrease in bladder capacity (the opposite of its effect in chronic spinal cord-injured cats) with an increase in micturition volume and decrease in residual volume resulting from improvement in voiding efficiency. The unexpected improvement in voiding efficiency can be explained by the 8-OH-DPAT-induced emergence of phasic EUS relaxation. Phasic EUS relaxation was also altered by 8-OH-DPAT in spinally intact rats, whereas the 5-HT1A receptor antagonist N-tert-butyl-3-[4-(2-methoxyphenyl)-piperazin-1-yl]-2-phenylpropanamide (WAY-100635), on its own, was without effect. It remains to be determined when phasic relaxation is restored after spinal cord injury, and indeed whether it is ever truly lost or is only temporarily separated from excitatory input.


2014 ◽  
Vol 23 (11) ◽  
pp. 1395-1406 ◽  
Author(s):  
Charuspong Dissaranan ◽  
Michelle A. Cruz ◽  
Matthew J. Kiedrowski ◽  
Brian M. Balog ◽  
Bradley C. Gill ◽  
...  

Vaginal delivery is a risk factor for stress urinary incontinence (SUI). Mesenchymal stem cells (MSCs) home to injured organs and can facilitate repair. The goal of this study was to determine if MSCs home to pelvic organs after simulated childbirth injury and facilitate recovery from SUI via paracrine factors. Three experiments were performed. Eighteen female rats received vaginal distension (VD) or sham VD and labeled intravenous (IV) MSCs to investigate if MSCs home to the pelvic organs. Whole-organ imaging and immunofluorescence were performed 1 week later. Thirty-four female rats received VD and IV MSCs, VD and IV saline, or sham VD and IV saline to investigate if MSCs accelerate recovery of continence. Twenty-nine female rats received VD and periurethral concentrated conditioned media (CCM), VD and periurethral control media, or sham VD and periurethral control media to investigate if factors secreted by MSCs accelerate recovery from VD. Urethral histology and function were assessed 1 week later. Significantly more MSCs were observed in the urethra, vagina, and spleen after VD compared to sham VD. Continence as measured by leak point pressure (LPP) was significantly reduced after VD in rats treated with saline or control media compared to sham VD but not in those given MSCs or CCM. External urethral sphincter (EUS) function as measured by electromyography (EMG) was not improved with MSCs or CCM. Rats treated with MSCs or CCM demonstrated an increase in elastin fibers near the EUS and urethral smooth muscle more similar to that of sham-injured animals than rats treated with saline or control media. MSCs homed to the urethra and vagina and facilitated recovery of continence most likely via secretion of paracrine factors. Both MSCs and CCM have promise as novel noninvasive therapies for SUI.


Sign in / Sign up

Export Citation Format

Share Document